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Abstract—In this paper we describe a framework to improve
the detection of ball hit events in tennis games by combining
audio and visual information. Detection of the presence and tim-
ing of these events is crucial for the understanding of the game.
However, neither modality on its own gives satisfactory results:
audio information is often corrupted by noise and also suffers
from acoustic mismatch between the training and test data, and
visual information is corrupted by complex backgrounds, camera
calibration, and the presence of multiple moving objects. Our
approach is to first attempt to track the ball visually and hence
estimate a sequence of candidate positions for the ball, and to
then locate putative ball hits by analysing the ball’s position
in this trajectory. To handle the severe interferences caused by
false ball candidates, we smooth the trajectory by using locally
weighted linear regression and removing the frames where there
are no candidates. We use Gaussian mixture models to generate
estimates of the times of hits using the audio information, and
then integrate these two sources of information in a probabilistic
framework. Testing our approach on three complete tennis games
shows significant improvements in detection over a range of
conditions when compared with using a single modality.

I. INTRODUCTION

Automatic analysis of sports games is an area that is

attracting considerable research attention, not only because

of commercial applications, but because sports games contain

rich audio and visual information within a well-organised

structure and hence are an excellent testing-ground for de-

veloping systems that “understand” interactions. In analysing

a sports game, detection and recognition of sequences of

key events is important in many applications, such as video

retrieval of events [1], [2], video summarization and object

tracking [3], [4] and analysis of player tactics [5]. One of the

key events in a tennis game is the ball-hit: reliable detection

of this event is essential.

Our previous work on ball-hit detection focused on the

use of audio information, both low-level acoustic features [7]

and high-level contextual information[8]. However, the audio

information extracted from the soundtrack of a tennis game is

often corruption by crowd noise, players yelps, commentary

etc. and there is always some degree of acoustic mismatch

between the training and test data.

To reduce the effect caused by audio noise, in [6], we

attempted to estimate ball trajectories. Satisfactory acquisition

of the ball trajectory requires a high frame rate (at least

50 frames per second) to reduce the problems caused by

camera calibration and to reduce blur. This high frame rate is

only found in interlaced videos, in which each frame actually

consists of two fields, and both fields can be treated as separate

frames during processing. However, most sports videos, after

compression, are converted into progressive format at a frame

rate of 25 frames per second. This lower frame rate creates

a larger timing gap between frames, which is manifest as

changes of shape and size of the image of the ball, resulting

in a high number of false candidates, and hence poor tracking

performance. In addition, in [6], direction of velocity change

was used, which meant that we were unable to distinguish

ball bounces from ball hits. Occlusion of the ball, either by a

player or a court line, is also a major problem.

In this work, we improve the approach reported in [6] by

1) reducing false candidates by masking the court line and

the players;

2) utilising the Viterbi algorithm to estimate the most likely

ball trajectory;

3) connecting trajectory fragments by smoothing using

approximate fitting curves.

The remainder of this paper is organised as follows. In

section 2, some related work is introduced. Sections 3–6

describe the approaches to ball hit detection using audio and

video information, and the theoretical framework for their

integration. We list the data used in section seven, and the

results are presented in section eight. Finally, conclusions are

given in section nine.

II. RELATED WORK

Various researchers have studied the use of audio processing

to discover audio events in sports videos. [9], [10], [11], [12],

[13], [14]. [9] employed an unsupervised technique using a

spectral clustering algorithm to discover the audio elements.

[10] proposed a discriminative feature set for acoustic event

detection according to approximated Bayesian accuracy. [11]

utilized rule-based classification according to audio type and

speaker identity. [12] built a two-stage classifier for vocal

and non-vocal events classification and then for normal and

“excited” events classification. [13] employed a Bayesian

network to combine the context information for audio stream

segment. [14] divided the audio stream into short sequences,

and then classified them into three classes: speaker, crowd and

referee whistle. In our own previous work, the dependencies



between audio events were used to enhance the robustness of

audio event detection in [8],

The problem of detecting and tracking the ball using visual

information been studied by Yu, who developed an enhanced

trajectory based ball detection system with camera motion

recovery to capture the motion of a soccer ball [15] and

analysed the 2D distribution of ball candidates and exploit

the characteristic that the ball trajectory presents in a near

parabolic curve in video frames [16]. This work used ho-

mography projection to form a background template over all

frames by computing a Gaussian modal of each pixel. [17]

used homography transformation between multiple observed

frames to locate ball and players. [18] presented a real-time

computer vision system that tracks the motion of a tennis

ball in 3D using multiple cameras. [19] employed the Viterbi

algorithm and the Kalman filtering to detect and track the

ball in a playground. [20] used a bi-directional Viterbi search

method to improve the precision of ball tracking. In [21], ball

candidates were obtained in each video frame and then Kalman

filtering was utilised to generate candidate trajectories from

which ball trajectories were selected and extended. In [22], a

coarse-to-fine strategy is used to identify ball in a single frame,

and then CONDENSATION algorithm was for ball tracking.

Whilst the research cited above has considerably advanced

the quality of ball detection and tracking, the presence of

interfering noise and acoustic mismatch (in audio tracking)

and the difficulties posed by occlusion, blur, colour and shape

distortion (in video tracking) means that research on this topic

using a single modality will inevitably lead to diminishing

returns. Hence we turn to an approach that integrates audio

and visual information.

Previous work [23], [15] has investigated using both audio

and visual information, but this work used only a section of

a single game rather than several complete games, as used

here. In addition, the work presented here takes into account

the impact of noise interference in the audio track on ball hit

detection, which is important, because the audio quality on

video soundtracks is often poor. [24] focused more on a coarse

scene segmentation rather than fine detection of events, and

on processing changes of view, switching between the global

view and the close-up view. This kind of visual information

has limited application to ball hit detection, because changes of

camera view are not often observed during a rally. In [25], the

authors treated the sound of ball hit as an indication to locate

the players’ position in the court using visual information, and

then to infer the ball trajectory.

Our approach is to make independent estimates of the

timings of the ball hits using visual and audio information, and

then combine them in a probabilistic framework to generate

improved estimates. A detailed description of the approach

follows in the next sections.

III. THEORETICAL FRAMEWORK

Our approach to ball-hit detection using multimodal infor-

mation begins by finding the most likely sequence of visual

events E∗
v together with the most likely sequence of audio

events E∗
a , given the observed low-level visual (Fv) and audio

(Fa) features. E
∗
v and E

∗
a can be estimated using equation 1:

(E∗
v , E

∗
a) = argmax{Ev,Ea}

Pr(Ev, Ea|Fv, Fa) (1)

Equation 1 can be re-written as:

(E∗
v , E

∗
a) = arg max

{Ev,Ea}
Pr(Ev|Fv)Pr(Ea|Fa)Pr(Ea|Ev) (2)

Equation 2 factors the ball hit detection into three processes:

1) ball hit detection only using visual information

(Pr(Ev|Fv))
2) ball hit detection using audio information (Pr(Ea|Fa))
3) refinement of the audio events given the detected visual

events (Pr(Ea|Ev))

The first process, using only visual information, uses ball-

tracking to provide coarse detection of ball hits, based on the

positions of the peak and trough points in the tracked ball

trajectory in each play shot scene. This technique generates

false positives because of noise and unconnected trajectory

fragments (caused by occlusion). The second process, using

only audio information, follows our previous work [7]: we

train a set of acoustic models for seven different audio events

found in the game (one of which is a ball hit) and treat

detection of ball hits as a classification problem. The third

process treats the visually detected ball hits as constraints

that reduce the impact of noise and other types of audio

event on the audio-detected ball hits. We combine audio and

visual information at the event level rather than using a low-

level audio-visual fusion approach. There are two reasons

for this approach: firstly, fusion at low-level requires good

synchronisation between the audio and visual information,

which is a not always obtained on recordings. Secondly,

making independent audio and visual estimates of the ball

hits sidesteps the problem of mismatch between the training

and test data, which causes considerable problems in fusing

the data.

Fig. 2. Visual event detection framework
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Fig. 1. Detection of ball candidates (a) Original image; (b) Binary image (c) Image after locating court lines and removing all non-court regions (d) Three
ball position candidates (in green)

IV. DETECTION OF VISUAL EVENT

The essential idea of ball hit detection using visual infor-

mation is to locate the peaks and troughs of the smoothed ball

trajectory obtained by searching for the optimal path from

possible candidates over the observed frames of a play shot

scene. Figure 2 presents the four main steps in this technique:

1) Detection of ball candidates

2) Search of the optimal path through the ball candidates

3) Smooth of ball trajectory

4) Location of peaks and bottoms on the fitted curve

A. Ball Candidates Detection

To a good approximation, the ball’s colour is white in long

view shots, so white pixels are first segmented according to

equation 3

B(x, y) =







1 r(x, y) ≥ I ∧ g(x, y) ≥ I ∧ b(x, y) ≥ I

0 otherwise

(3)

where B is a binary image and (x, y) is the pixel location,
r(x, y), b(x, y) and g(x, y) denote the RGB values of each
pixel, respectively. The threshold I is set to be 150 empirically.
Figure 1 (b) shows the binary image converted from the

original image (Figure 1(a)).

When detecting the ball candidates, the false candidates are

mainly from court lines, players’ motion, spectators around

the tennis court, and from artefacts due to camera calibration.

To reduce the number of false candidates, we try to segment

the court region from the spectators’ region, and then mask

the court line and players in the court.

The court segmentation is based on the acquisition of

court lines. To accurately find all court lines, we utilise a

homography transform, described by a 3×3 matrix H , to find
the mapping between points in a “virtual” tennis court template

and some points in the current frame. The pixel coordinate in

the template is represented by a vector [x y 1]T which is
multiplied by H yielding the vector [u v w]T :





u
v
w



 =





h11 h12 h13

h21 h22 h23

h31 h32 h33









x
y
1



 (4)

The final target coordinate is (x′, y′) = (u/w, v/w). The
division by w warps the coordinates properly to account for
perspective foreshortening. For a detailed description of this

process, refer to [26].

The homography transform enables us to obtain the coor-

dinates of four points at the corner of the court, to then filter

out the region for spectators, and to mask the court line. To

further reduce the possible false ball candidates, we also try

to locate the players in the court by finding the regions in the

top-half and bottom-half court with the largest variations in

intensity by differencing two successive frames. After locating

players, the region is masked by a rectangular box, whose size

is adaptively changed according to the player’s position in the

court. Figure 1 (c) shows the re-plotted court line after the

homography transform has been applied.

To further reduce the number of false ball candidates, we
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Fig. 3. An example of locating ball hits after searching for the optimal path with the Viterbi algorithm

set limitations to the size of the candidate “blob” (B) after
court segmentation and application of masks to court lines

and players.

B(i) =















1 (3 ≤ W (i) ≤ 40) ∧ (3 ≤ L(i) ≤ 40)
∧(W (i) ∗ L(i) ≤ 300)

0 otherwise

(5)

where W (i) and L(i) denotes the width and length of the ith
ball candidate, B(i). In figure 1 (d), we show the final set of
ball candidates, which are labelled with green squares.

After the initial very coarse location of the ball position

based on white pixels, we do not take its colour into account

because it can change in different matches due to the light and

the colour of background: in fact, the colour can change at the

different ends of a tennis court in the same match. Shape is

also not considered, because it is greatly affected by motion

blur and low frame rate.

B. Estimating the Ball Trajectory

The search for the optimal ball trajectory is made using the

Viterbi algorithm, which requires three probabilistic parame-

ters:

• the probability of a state (Pr(S)),
• the probability distribution of the observations (Pr(b))
• the transition probability between any two states (Pr(T )).

We treat each ball candidate (B) in the current frame Ft as

one state of the total number of ball candidates Nt at time t.
This means that the number of states in a frame varies. The

number of frames depends on the duration of the rally and

varies greatly from about one second (where the “rally” is a

single serve) to as long as 40 seconds for a very long rally. We

assume that all ball candidates in one frame have a uniform

probability distribution. Unlike previous work which bases the
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Fig. 4. Observation probability

observation probability b on variables such as the colour, size
and shape of the ball, we define b only by its position (Pos)



in the court.

b(Bi) = Pr(Pos(Bi)), 1 ≤ i ≤ Nt (6)

One reason for this has already been mentioned in section II—

the colour and shape can change, even within a game. The

second one is that the ball position can be fairly accurately

captured when the ball is in the middle of the court, but at

the ends of the court, the position is much harder to observe

because of players’ motions and background noise. Figure 4

shows a histogram of the y-coordinate of the ball, made from

ground-truthed data. To simplify the computation, b(Bi) is
modelled as a normal distribution based on this histogram.
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Fig. 5. Probabilistic distribution of two balls in two successive frames

The transition probability between states is estimated com-

puting the distribution of the Euclidean distance (D) between
the ball candidate (Bi) in the previous frame Ft−1 and the

candidate (Bj) in the current frame Ft.

T (Sij) = Pr(Dt,t−1(Bi, Bj)), 1 ≤ i ≤ Nt−1, 1 ≤ j ≤ Nt

(7)

Figure 5 shows the probabilistic distribution of the distance

between any two balls in two successive frames, obtained from

training data.

Figure 3, the top and second pane show respectively the

number of ball candidates before and after the Viterbi search.

The y-axis is the value of the y-coordinate of a candidate

position extracted from a frame, the x-axis is the frame (time)

index. In the top pane, there are multiple candidates for the ball

position in each frame. Use of the Viterbi algorithm reduces

the number to a single candidate per frame, as shown in the

second pane.

C. Smoothing and Event Location

Although the use of the Viterbi algorithm reduces the

number of false candidates, some incorrect ball positions

remain in the trajectory. This means that the path formed

by connecting the detected positions is very noisy and thus

location ball hits, which correspond to peaks and troughs in

the trajectory is inaccurate.

Firstly, we use curve fitting to smooth the tracked candidate

positions. Smoothed values are determined by neighbouring

data points defined within a span of five frames. A locally

weighted linear least-squares regression based on a quadratic

polynomial is performed on these five points [28]. The third

pane of figure 3 shows the fitted curve (solid line). However,

the curve does not fit the ball trajectory very well at times

when there are a high number of incorrect candidates (e.g.

between frames 280 and 300) and missing data (e.g. around

frame 90).

For detection, we use the value of the y-coordinate to divide

the fitted curve into two parts, one part corresponding to balls

in the half of the court nearest the camera, the other to balls in

the distant half of the court. We can thus easily locate peaks

and troughs by finding the positions of the maximal or minimal

values within these two regions. The bottom pane of figure

3 shows the smoothed trajectory with the estimated ball hit

positions shown as dashed vertical lines.

V. AUDIO EVENT DETECTION

In previous work [7], we defined seven types of audio events

for the description of tennis matches, one of which was the

sound of the racquet hitting the ball. Table I gives descriptions

of each audio class and their related functions in a tennis game.

For audio event detection, there are two issues to be addressed:

TABLE I
AUDIO CLASSES USED IN THIS WORK

Audio Event Name Function

Chair umpire’s speech UMP Report Score

Line judge’s shout LJ Report serve out, fault etc.

Sound of ball hit BH Serve, Rally

Crowd noise CN Applause

Beep BP Let

Commentators’ speech COM

silence SIL -

1) distinguishing between the seven types of audio events;

2) reducing the impact of acoustic mismatches between the

training and test data.

The first problem is solved in a standard maximum-likelihood

framework by finding the most likely audio event given the

“observed” low-level audio information, F a , as shown in

equation 8:

Ea∗

= argmax
Ea

Pr(Ea|F a) (8)

∝ argmax
Ea

Pr(F a|Ea) Pr(Ea) (9)

Pr(F a|Ea) indicates a posterior probability computed using a
Gaussian mixture model (GMM), and Pr(Ea) can be regarded
as a prior distribution of each audio type (set equal in this

paper). Equation 9 is the tranformation of equation 8 after

using Bayes theorem.

To reduce the impacts of acoustic mismatch, we employ a

confidence meaure (CM). The likelihood of each audio event

class for a frame is estimated using the Gaussian mixture

models of audio events built from the training-data, and the

difference between highest log likelihood and the next highest

is used as a CM for that frame. This use of a difference be-

tween likelihoods provides some immunity from mismatches



between the training- and test-set channel conditions: if the

mismatch is high, then all the likelihoods will be low, but the

overall mis-match will be cancelled out by the differencing

operation, and the differences will be relatively stable within

a range. A suitable threshold for the CM corresponding to a

positive detection of an audio event ball hit can be determined

from the training data.

VI. COMBINATION OF AUDIO AND VISUAL INFORMATION

The combination of audio and visual information for ball hit

detection is based the assumption that they provide comple-

mentary information. We employ a probabilistic framework to

combine the audio ball-hit probabilities (Ea
BH ) with the visual

ball-hit probabilities (Ev
BH ) at the “event” level.

Equation 9 can hence be changed to:

Ea∗

BH = argmax
Ea

BH

∏

t

Pr(F a
t |E

a
BH) Pr(Ea

BH)LHα(F v
t |E

v
BH)

(10)

The term Pr(F a
t |E

a
BH) gives the audio probability of frame

F a
t given a ball hit at time t. The term LH(F v

t |E
v
BH) gives

the visual probability of frame F v
t given a ball hit at time t.

LH(F v
t |E

v
BH) is defined to be high when a ball hit has been

visually detected and to be 1.0 at other times. Specifically, at

a time when a ball hit has been detected (t0), it is modelled
as the absolute difference between the y-coordinate of the ball

and the y-coordinate of the horizontal middle line of the court,

C0:

LH(F v
t |E

v
BH) =

{

abs(Posy(B(t))− C0) t = t0 ± 2
1 t 6= t0 ± 2

(11)

This equation shows that, in practice, we extend the period at

which a visual event is detected by ±2 visual frames to deal
with the synchronisation problems referred to in section III.

We include a parameter α to control the influence of the
visually detected events on Ea∗

BH : the higher the value of α,
the more emphasis is given to the decoded visual events at the

expense of the decoded audio events. α is empirically set to
be 4.0 in our experiments (we experiment with varying α in
the last set of experiments).

VII. DATA

Soundtrack data from four tennis matches was used, one

match for training and the other three for test. Table II gives

essential information about these matches. The training data is

TABLE II
DATA FOR TRAINING AND TEST

Game Type Dur. # ball
(mins.) hit

Train Wim-08 singles 180 1528

Test (1) AUS-10 singles 106 736

Test (2) US-11 singles 81 719

Test (3) French-12 singles 83 572

extracted from a men’s single match of the Wimbledon Open

(2008), while the test matches are from the Australian Open

(Test 1 ), the US Open (Test 2), and the French Open (Test

3). The soundtracks of the four matches are segmented into 30

ms frames using a sliding window with a 20-ms overlap. This

means the audio frame rate is 100 frames per second, higher

than the visual frame rate (25 frames per second). Each audio

frame is converted into a vector of 39-D MFCCs (13 static

components, plus velocity and acceleration). Gaussian mixture

models (GMMs) are built from frames labelled as belonging

to each of the seven audio classes shown in Table I.

The training audio data (Wim-08) was fully annotated with

the seven classes. For the audio test data, we marked only the

positions of the ball hits. Care was taken to ensure that the

audio and video were synchronised.

VIII. EXPERIMENTAL SET-UP

Audio detection performance is measured under two condi-

tions:

• AC1: not using the confidence measure

• AC2: using the confidence measure

Visual detection performance is measured under four condi-

tions:

• VC1: curve fitting over all frames

• VC2: curve fitting over the frames after removing blank

frames

• VC3: search of the optimal path using a sliding window

• VC4: search of the optimal path not using a sliding

window

After applying smoothing, there are many frames not contain-

ing any ball candidates, which we term “blank” frames. These

frames are usually generated when the ball is occluded by a

player or a court line during a rally, or when the scene switches

to one in which there is no play, and are obviously detrimental

to ball hit position estimation.

Some frames contain many candidates, and these cause a

problem in the Viterbi search. When estimating the most likely

trajectory using a global search, the presence of these frames

allows too much freedom, especially if the number of frames

is large, and consequently, the resulting trajectory can be very

inaccurate. To combat this problem we experimented with

using a set of local searches, in which dynamic programming

is performed over a window of D frames, and the window is
then shifted by s frames. The resulting set of optimal paths is
then joined to find the overall best trajectory.

To measure performance, an F-score is used, defined as:

P =
# correctly detected ball hits

# detected ball hits
(12)

R =
# correctly detected ball hits

# ball hits in ground truth

F − score =
2PR

P +R
.

(13)

A ball hit is considered to be correctly detected when it

is located within the manually annotated range of an event

labelled as a ball hit. Detected ball hits that lie outside such a

region are regarded as false positives, and undetected ball hits

are false negatives.



IX. RESULTS AND ANALYSIS
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Fig. 6. Performances of ball hit detection using only audio information on
three test matches

Figure 6 shows the F-score performance for ball hit de-

tection using only audio information on the three matches

in the test-set. The x-axis on this figure is the value used

for the confidence measure (CM). When the CM is zero,

no confidence measure has been used. We see that the best

detection performances are obtained on Test 1 and 2 without

using any CM, whilst we obtain the best performance on

Test 3 when CM = 7. This may be due to the acoustic
mismatch between the training and the test data. The acoustic

characteristics of the training match (a Wimbledon singles

match) are similar to that of Test 3, but are quite different from

Test 1 and Test 2. This leads to overall higher performance

on Test 3, which is further enhanced by the use of a CM.

Table III shows the F-score performance using only visual

TABLE III
PERFORMANCES OF BALL-HIT DETECTION IN THE CONDITIONS OF VC1

AND VC2 ON THREE TEST MATCHES

Test(1) Test(2) Test(3)

VC1 0.4391 0.3201 0.3882

VC2 0.5427 0.4728 0.5250

Impr.(%) +23.59 +47.70 +35.24

information for the cases VC1 and VC2 defined in section

VIII. Performance on all three matches is fairly similar, and

for Test 1 and Test 3, lower than performance obtained using

audio information. Significant improvements are obtained on

all three matches after removing the blank frames.

Table IX shows performance using a local search with

various window sizes (VC3) and a global search (VC4).

Table IX shows the performances when using a local and

global search, respectively. For some values of D, the local
search gives slightly better performance, but the results are not

conclusive.

Table V shows the performances on three test matches

when changing the number of shift frames. As with a fixed

window size (D = 10), some shift sizes can give slightly better
performance but overall, results are inconclusive. .

TABLE IV
DETECTION PERFORMANCE ON THE THREE TEST MATCHES USING VISUAL
INFORMATION ONLY. VC3 USES A LOCAL SEARCH WITH A VARIABLE

WINDOW SIZE, D. VC4 USES A GLOBAL SEARCH.

Condition Test(1) Test(2) Test(3)

D=5 0.5418 0.4725 0.5215
Local D=10 0.5427 0.4728 0.5250
Search D=15 0.5390 0.4731 0.5267
(VC3) D=20 0.5340 0.4728 0.5267

D=25 0.5359 0.4728 0.5267
D=30 0.5312 0.4738 0.5262

Global Search (VC4) 0.5364 0.4698 0.5129

TABLE V
DETECTION PERFORMANCE ON THE THREE TEST MATCHES USING VISUAL
INFORMATION ONLY. VC3 USES A LOCAL SEARCH WITH A FIXED WINDOW

SIZE OF 10 AND A VARIABLE SHIFT SIZE, s.

Condition Test(1) Test(2) Test(3)

S=1 0.5427 0.4728 0.5250

S=2 0.5424 0.4750 0.5254

S=3 0.5360 0.4661 0.5254

S=4 0.5381 0.4836 0.5197

S=5 0.5269 0.4663 0.5160

S=6 0.5370 0.4678 0.5146

S=7 0.5437 0.4657 0.5152

S=8 0.5255 0.4810 0.5174

S=9 0.5335 0.4619 0.5121

S=10 0.5325 0.4638 0.4942

Figure 7 compares the performances on each of the three

test matches when audio and visual information is combined

with performance using audio information alone and visual

information alone. Performance is plotted as a function of the

CM value used in the audio detector. AV 1 and AV 2 show
the performance when blank frames are not removed (AV1)

and when they are removed (AV2). Audio is the performance
using only audio information, and V isual performance using
only visual information.

It can be seen that combining audio and video with no

confidence measure always gives better performance than

using video alone, and at least as good performance as using

audio alone. For match Test 3, if the confidence measure is

correctly chosen, the combination performance is better than

the already high performance of audio alone.

When combining the detected visual events with the audio

information, we set a parameter α in equation 10 to adapt
the effect of visual event detection. Figure 8 shows the

performance on the three test matches with α = 1, 4 and 100.
When α is high, (e.g. 100) the value of the audio confidence
measure has less effect on the performance than when α is
low, which is what we would expect, as more weight has been

given to the visual hypotheses. However, the figures indicate

that for all three test sets, if the value of α > 4.0, there is little
or no effect on the overall best performance at the optimum

value of the CM, which is 0 for Test 1 and Test 2 and about

7 for Test 3.
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Fig. 7. Performance comparison of ball-hit detection

X. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated that ball-hit detection

can be successfully performed on a recording that may have a

low visual frame rate and a poor quality soundtrack by fusing

audio and visual information at the “event” level. We have

presented separate approaches to detection using audio and

video information, and a probabilistic technique for integrating

the two modalities. Our approach copes well with frequently

encountered problems in this area such as low-level audio

interference, training and test-set mis-match and audio/video

synchronisation problems. We believe that the approach of

constraining detection in one modality by using information

from the other modality has general application in many audio-

visual scenarios, including audio-visual speech recognition,

segmentation, and understanding.

In our future work, we firstly will consider how to further

improve the effectiveness and efficiency of tracking a tennis

ball in more complex conditions, such as a background with

more noise and severe camera calibration. We will aim to

reduce the acoustic mismatch with taking the visual infor-

mation into account and we will use a similar approach

in detecting the voices of the line judges, which are also

key to understanding the game. This will require improved

robustness to different interferences, which we aim to achieve

by integrating more context information. We also intend to

extend the technique to sports games in different domains.
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